Efficient Multisite Unnatural Amino Acid Incorporation in Mammalian Cells via Optimized Pyrrolysyl tRNA Synthetase/tRNA Expression and Engineered eRF1
نویسندگان
چکیده
The efficient, site-specific introduction of unnatural amino acids into proteins in mammalian cells is an outstanding challenge in realizing the potential of genetic code expansion approaches. Addressing this challenge will allow the synthesis of modified recombinant proteins and augment emerging strategies that introduce new chemical functionalities into proteins to control and image their function with high spatial and temporal precision in cells. The efficiency of unnatural amino acid incorporation in response to the amber stop codon (UAG) in mammalian cells is commonly considered to be low. Here we demonstrate that tRNA levels can be limiting for unnatural amino acid incorporation efficiency, and we develop an optimized pyrrolysyl-tRNA synthetase/tRNACUA expression system, with optimized tRNA expression for mammalian cells. In addition, we engineer eRF1, that normally terminates translation on all three stop codons, to provide a substantial increase in unnatural amino acid incorporation in response to the UAG codon without increasing readthrough of other stop codons. By combining the optimized pyrrolysyl-tRNA synthetase/tRNACUA expression system and an engineered eRF1, we increase the yield of protein bearing unnatural amino acids at a single site 17- to 20-fold. Using the optimized system, we produce proteins containing unnatural amino acids with comparable yields to a protein produced from a gene that does not contain a UAG stop codon. Moreover, the optimized system increases the yield of protein, incorporating an unnatural amino acid at three sites, from unmeasurably low levels up to 43% of a no amber stop control. Our approach may enable the efficient production of site-specifically modified therapeutic proteins, and the quantitative replacement of targeted cellular proteins with versions bearing unnatural amino acids that allow imaging or synthetic regulation of protein function.
منابع مشابه
Expanding the Genetic Code of Yeast for Incorporation of Diverse Unnatural Amino Acids via a Pyrrolysyl-tRNA Synthetase/tRNA Pair
We report the discovery of a simple system through which variant pyrrolysyl-tRNA synthetase/tRNA(CUA Pyl) pairs created in Escherichia coli can be used to expand the genetic code of Saccharomyces cerevisiae. In the process we have solved the key challenges of producing a functional tRNA(CUA Pyl) in yeast and discovered a pyrrolysyl-tRNA synthetase/tRNA(CUA Pyl) pair that is orthogonal in yeast....
متن کاملEfficient viral delivery system for unnatural amino acid mutagenesis in mammalian cells.
Here we report the development of a baculovirus-based delivery system that enables the efficient incorporation of unnatural amino acids into proteins in mammalian cells. We have exploited the large cargo-capacity (>30 kb) and stability of the double-stranded DNA genome of baculovirus to deliver to a variety of cell types all of the components required to genetically incorporate novel amino acid...
متن کاملImproving orthogonal tRNA-synthetase recognition for efficient unnatural amino acid incorporation and application in mammalian cellswz
Unnatural amino acids have been genetically encoded in Escherichia coli, yeast, and mammalian cells using orthogonal tRNA–synthetase pairs and unique codons. This technology enables novel chemical and physical properties to be selectively introduced into proteins directly in live cells, and thus have great potential for addressing molecular and cell biological questions in the native cell setti...
متن کاملImproving orthogonal tRNA-synthetase recognition for efficient unnatural amino acid incorporation and application in mammalian cells.
Optimizing the anticodon recognition between orthogonal tRNA and synthetase significantly increased the incorporation efficiencies of various unnatural amino acids in mammalian cells, and the enhanced incorporation enabled efficient photocrosslinking of interacting proteins in mammalian cells.
متن کاملGenetic Incorporation of Histidine Derivatives Using an Engineered Pyrrolysyl-tRNA Synthetase
A polyspecific amber suppressor aminoacyl-tRNA synthetase/tRNA pair was evolved that genetically encodes a series of histidine analogues in both Escherichia coli and mammalian cells. In combination with tRNACUA(Pyl), a pyrrolysyl-tRNA synthetase mutant was able to site-specifically incorporate 3-methyl-histidine, 3-pyridyl-alanine, 2-furyl-alanine, and 3-(2-thienyl)-alanine into proteins in res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 136 شماره
صفحات -
تاریخ انتشار 2014